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ABSTRACT

The guitar is a popular instrument for a variety of reasons,
including its ability to produce polyphonic sound and its
musical versatility. The resulting variability of sounds,
however, poses significant challenges to automated meth-
ods for analyzing guitar recordings. As data driven meth-
ods become increasingly popular for difficult problems
like guitar transcription, sets of labeled audio data are
highly valuable resources. In this paper we present Gui-
tarSet, a dataset that provides high quality guitar record-
ings alongside rich annotations and metadata. In partic-
ular, by recording guitars using a hexaphonic pickup, we
are able to not only provide recordings of the individual
strings but also to largely automate the expensive annota-
tion process. The dataset contains recordings of a vari-
ety of musical excerpts played on an acoustic guitar, along
with time-aligned annotations of string and fret positions,
chords, beats, downbeats, and playing style. We conclude
with an analysis of new challenges presented by this data,
and see that it is interesting for a wide variety of tasks
in addition to guitar transcription, including performance
analysis, beat/downbeat tracking, and chord estimation.

1. INTRODUCTION

Well-annotated audio files are key to MIR research. They
are necessary both for evaluating algorithm performance
and for developing models. For time-varying musical in-
formation such as notes in a polyphonic context, the pro-
cess of creating accurate annotations can be an especially
difficult and slow process. For monophonic audio, there
are software tools, such as Tony [12], built to facilitate the
manual annotation process by first providing an estimate
and allowing the user to manually correct the mistakes.
However, there is no equivalent tool for polyphonic au-
dio, and the accuracy of pitch estimation methods on poly-
phonic audio is significantly worse than for monophonic
audio.
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Recently, several methods have been developed to ad-
dress the problem of creating pitch annotations. Most no-
tably, Su and Yang’s work [22] provides an efficient way
of generating note-level annotations for recordings of poly-
phonic music by utilizing the midi-keyboard as an annota-
tion interface. An alternative approach was proposed that
uses an analysis-synthesis framework to generate annota-
tions by re-synthesizing estimates [18]. However, these
methods are insufficient when applied to guitar record-
ings. In the midi-keyboard approach, it would be very dif-
ficult for a keyboard player to replicate note-by-note what
a guitarist is playing. The analysis-synthesis approach re-
quires the analysis (i.e. estimate of the correct notes) to
be reasonably close to the ground truth in order to gen-
erate realistic sounding audio; unfortunately, the existing
transcription algorithms perform woefully badly on poly-
phonic solo guitar recordings. Unsurprisingly, there is no
sizable database of guitar recordings with note-level anno-
tations and realistic guitar playing.

In this paper, we present GuitarSet: a sizable dataset of
richly annotated, realistic guitar recordings. We describe
our data collection and annotation process in detail and in-
troduce our solution for efficiently creating note-level an-
notations. Our solution relies on the use of an acoustic
guitar with a hexaphonic pickup, which outputs one chan-
nel of audio signal per guitar string; as well as custom
annotation tools. This effectively turns polyphonic tran-
scription into monophonic transcription. We conclude with
an analysis of new challenges presented by this data, and
see that it is interesting for a wide variety of tasks in ad-
dition to guitar transcription, including performance anal-
ysis, beat/downbeat tracking, and chord estimation. The
dataset (audio and annotations) and the code used to gen-
erate the annotations are made freely available online. '

2. RELATED WORK

A handful of datasets exist for polyphonic instrument tran-
scription. The MAPS dataset [7] contains a large collec-
tion of transcribed piano notes, chords, and pieces (us-
ing a Disklavier), recorded in different acoustic conditions.
Similarly, the UMA-Piano [2] dataset contains all possible
combinations of notes at varying dynamics. These datasets
have been critical to the development of automated pi-
ano transcription methods; Sigtia’s deep-learning powered

'https://github.com/marl/GuitarSet



piano transcription algorithm [20] and Ewert’s algorithm
based on non-negative matrix deconvolution [8] are just
two of many data driven algorithms that rely on the MAPS
dataset. More recently, efforts devoted to historic preser-
vation of player piano rolls also provide new ways of ex-
tending transcription datasets for piano music [19].

For guitar, the Guitar Playing Techniques dataset [23]
contains 6580 clips of single notes along with playing
technique annotations. The IDMT-SMT-Audio-Effects
dataset [21] contains ~ 20 hours of single guitar notes
and chords with varying audio effects. Finally, the IDMT-
SMT-Guitar dataset [11] contains several types of guitar
data, including single notes, playing techniques, note clus-
ters, and note and chord-level annotations for short ex-
cerpts. While each of these datasets are useful, none of
them provide note-level annotations of realistic polyphonic
guitar pieces, which is a limiting factor in exploring many
interesting new research directions.

The absence of a sizable dataset for realistic polyphonic
guitar playing is largely due to the difficulty of annotating
complex guitar recordings directly. In order to help facili-
tate analysis of guitar recordings, hexaphonic guitar pick-
ups have become a useful research tool. The idea of us-
ing hexaphonic pickups to generate transcriptions was first
proposed by O’Grady and Rickard in 2009 [16]. In their
method, signals from individual strings are analyzed using
supervised non-negative matrix factorization. Hexaphonic
pickups have also been used for analysis and resynthesis of
monophonic single-note guitar recordings [15], as well as
for visualizing guitar performances [1].

We posit that, despite piano and guitar having compara-
ble popularity, research has focused much more heavily on
analysis of piano recordings simply because of the avail-
ability of data. Online communities that provide guitar tab-
lature such as Ultimate Guitar > are very popular, and accu-
rate methods for guitar tablature transcription would have
the potential to attract a vibrant community. By creating
GuitarSet, and therefore demonstrating an efficient process
of creating detailed note level annotations for guitar, we
hope to provide the community with better resources for
studying guitar transcription and more.

The collection and analysis methods for GuitarSet was
designed with the principles described by Su and Yang [22]
in mind: (1) Generality: We chose well-known progres-
sions in popular styles as the basis of GuitarSet’s mate-
rial, and collect realistic, complex and polyphonic musi-
cal phrases. (2) Efficiency: The method of creating an-
notations for GuitarSet is mostly automated, with human
experts focusing on correcting onsets, which requires con-
text and expertise. GuitarSet can be easily extended for
this reason. (3) Cost: The key equipment, the hexaphonic
pickup, is very affordable. and (4) Quality: In order to
preserve nuances in the performance, including intra-note
pitch deviations and inter-string onset-time patterns, we
craft special tools and provide multiple annotation formats
to ensure high quality annotations.

Zhttp://www.ultimate-guitar.com/

3. DATA COLLECTION PROCESS

Hexaphonic pickups are magnetic pickups that have in-
dividual outputs for each magnet. We ordered a clip-on
hexaphonic pickup from ubertar . com, which has 6 in-
dividual single coil magnets, and is manually attached to
an acoustic guitar. For better pickup signal-to-noise ratio
(SNR), nickel wound steel strings are used for the acoustic
guitar.

The audio was recorded in a small, soundproof record-
ing studio with minimal reverberation. In addition to the
six channels from the hexaphonic pickup, we also record
the guitar using a Neumann U87 condenser microphone,
placed ~30 cm in front of the 18th fret of the guitar. This
results in seven channels of audio overall.

Six experienced guitarists were recruited to record for
this database. All six players have more than 10 years of
guitar playing experience, and were recruited by the au-
thors. The guitarists were asked to play 30 twelve to six-
teen bar excerpts from lead-sheets in a variety of keys, tem-
pos, and musical genres, described in Section 4. During
recording, guitarists were provided with a backing track
that consisted of a click track, drum set, and bass line,
heard through monitoring headphones. For each excerpt,
players were asked to comp (play chords), and then to solo
over their own comping. The guitarists were allowed to
replay excerpts until they were aesthetically satisfied with
their performance.

4. DATASET OVERVIEW

We use the JAMS file format [10] to store the rich collec-
tion of annotations for this dataset. For each recording,
the JAMS file contains annotations for tempo, key, and
style (metadata); beats and downbeats (inferred from the
click track); instructed chords (from the lead-sheets); per-
formed chords (via automatic estimation); note-level tran-
scription, including string and fret position (via automatic
estimation), onsets (via annotation), offsets (via automatic
estimation) and pitch contour for each note (via validated
automatic estimation). Descriptions of each of these an-
notation types are detailed in Section 5. Figure 1 gives a
visualization of some of the annotations provided for an
excerpt of the dataset.

In total, each player provided 30.47 minutes of musical
material, resulting in just over 3 hours of content in to-
tal. Each player was asked to play 30 excerpts, organized
as follows: 3 different chord progressions are paired with
each of the 5 different genres, all recorded at two differ-
ent tempi: slow and fast. The three progressions were the
12 bar blues, Autumn Leaves, and Pachelbel’s Canon. The
five different genres were Rock, Jazz, Funk, Bossa Nova
(BN), and Singer-Songwriter (SS). In order to broaden the
chord gamut in GuitarSet, key signatures were indepen-
dently assigned to each of the 30 excerpts.

5. ANNOTATION METHODS

The hexaphonic recordings are analyzed to generate anno-
tations for each string individually, and a complete tran-
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Figure 1. A 5 second excerpt of Jazz comping. Downbeats
and beats are indicated with solid and dashed vertical lines
respectively. (Top) Played chords and pitch contours, col-
ored by string. (Bottom) Instructed chords (lead sheet) and
string/fret positions.

scription of the excerpt is generated by aggregation. For
each string, onset/offset time pairs along with continuous
pitch tracks are annotated semi-automatically, with manual
validation. The validated transcriptions are then used to au-
tomatically create derivative annotations, including chords,
string and fret number, and more.

We first pre-process the hexaphonic recordings using
the KAMIR bleed removal algorithm [17] to reduce noise
picked up by the single coil magnets from adjacent strings.
We then generate a rough note-level transcription by run-
ning pYIN-note [13] over the recording of each string; this
rough transcription is used as the starting point for manual
validation.

5.1 Note-Level Annotations

We focus our manual annotation efforts on creating note-
level annotations, such as the one shown in Figure 1 (Top).
Accurately creating or correcting annotations of individual
string recordings requires contextual information and mu-
sical expertise. For example, an intentionally muted string
in a full chord still produces a clear pitch and onset when
examining the single muted string in isolation. However,
when mixed together with the other more resonant strings,
the muted note is completely masked. Because the muted
note is neither intended by performer nor heard by listen-
ers, we chose not to annotate it.

In order to address this issue efficiently and maximize
automation, we simplify the problem by taking a compo-
nent approach, and determine the onsets, offsets and pitch
tracks sequentially. We first focus on generating high qual-
ity onset annotations.By manually validating the onsets,
muted notes that shouldn’t be included in the annotation

and other non-note events are left out of the annotation.
Offsets are then automatically estimated, and the result-
ing note regions are used to facilitate highly accurate pitch
track estimations.

5.1.1 Onsets

Given automatically estimated onsets, removing false posi-
tive onsets can efficiently be done manually, but accurately
adding missed onsets efficiently requires machine assis-
tance. In order to allow annotators to easily add missed on-
sets, we automatically adjust human-estimated onset times
by searching for the most likely spectral flux peak in a lo-
cal neighborhood. Concretely, for a human estimated onset
time a, the true onset time a is determined by finding the
position for which the windowed onset strength function
G (t) is maximized.

Let E(t) be the root-mean-squared (RMS) energy cal-
culated at time ¢, and N,(¢) be the spectral flux novelty
function at time ¢ [3]:

n/2
No(t) =Y H(X(t, k)| - |X(E-1LE)]) (1)
k=1
where H(x) = “’2'9”‘ is the half-wave rectification func-
tion and ! = 5.8ms is a constant lag in time, n is the num-
ber of analysis bins, and £ is the bin index.
The windowed onset strength function G, (t) is con-
structed as follows,

Ga(t) = E(t) * No(t) * N'(a, o?) )
and the onset time is computed as

a = arg max(Gy(t)), 3)
t

where ¢ € [max(aprey + 7o, @ — 30), a + 30], 7, = 50ms
and ¢ = 30ms. The lower limit on ¢ ensures there are at
least 7, seconds between consecutive onsets. The Gaus-
sian component in G, (t) ensures the locality of the on-
set search, favoring proximity with the human estimate.
Figure 2 shows an instance of such an adjustment.

5.1.2 Offsets

For all onsets a, the corresponding offset b is estimated
automatically, using the following criteria. First the offset
novelty Ny (t) is modified slightly from Equation 1:

n/2

No(t) == > H'(IX(t, k)| - |X(t—1Lk)]) @
k=1

where H'(z) = m;|a:\ is the negative half wave rectifica-
tion function and ! = 5.8ms.

Using the generated offset novelty function, an offset
strength function G (¢) is generated.

_ Ny(t) * (log E(t — 1) — log E(t))

Gb (t) E(t)

(&)

where t € [a + Ty, Apert) and 7, = 30 ms. [ = 5.8ms is
the hop length in time of the analysis window.
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Figure 2. (Top) Waveform of a single note. (Upper Mid-
dle) Human estimated onsets, adjusted by examining the
onset strength function. (Lower Middle) Offset novelty
functions and the detected offset in black. (Bottom) G ()
and detected peaks.

The intuition behind the offset strength function Gy (t)
is straightforward: log-RMS difference and spectral flux
both give peaks for potential offsets, the RMS in the de-
nominator penalizes peaks of G (¢) that still have signif-
icant energy. The peaks of the offset strength function
Gyp(t) are then thresholded to generate the offset candi-
dates as shown in Figure 2. Offset candidates within 30
ms of the onset a are discarded, and the first offset candi-
date in time is then chosen from the remaining offsets as
b.

5.1.3 Pitch

After onsets and offsets are determined, the pitch tracks of
voiced regions are then estimated using pYin. The result-
ing estimation is then cleaned by the first author in Tony,
mostly correcting octave mistakes.

While we annotated the continuous pitch trajectories of
each note, the overall center pitches still needs to be in-
ferred. We choose a simple heuristic that averages the pitch
track frequencies. For a note with onset at time a and as-
sociated pitch track f(t),t € [a,b); the center pitch of the
note p is estimated by taking the average pitch track over
a subset of the note region ¢ € [a/, "), where o’ and V' are
25% and 50% of the note duration respectively:

b/
1
P:mZﬂt) (6)

t=a’

We only consider the subset ¢ € [a’, b’) to ensure a percep-
tually relevant average pitch, since the pitch near the onset
and offset of a guitar note can sometimes be unstable (e.g.
see Figure 1).

5.2 Derivative Annotations

Given note-level annotations, the lead sheets and the click
track, we automatically generate a series of derivative an-
notations.

5.2.1 String and Fret Position

Since the tuning of the guitar is known at the time of data
collection, fret positions can be determined simply by find-
ing the difference in semitones between the annotated pitch
and the pitch of the open string. A visualization of these
annotations is shown in Figure 1 (Bottom).

5.2.2 Chords

Two different types of chord annotations accompany each
of the 180 excerpts. The first type of chord annotation
is the chord written in the lead sheet that is provided to
the guitar players at the time of data collection. How-
ever, in order to better fit the given genre, the players of-
ten modified the given chords, hereafter called instructed
chords. Therefore the performed chords are not necessar-
ily the same as the instructed chords. Because the backing
track contains a bass line that is aligned to the root and
the timing of the instructed chords, the instructed and per-
formed chords vary mostly in chord type, not root. The
instructed chords have only four types (major, minor, dom-
inant seventh, half-diminished seventh); specific voicings,
extensions and alterations could be freely determined by
the players without suggestion bias.

We infer the performed chords by combining informa-
tion from the lead sheet and the annotated notes. In order to
make the comparison between the chords as instructed by
the lead sheet and the actual performed chords straightfor-
ward, the chord segmentation is determined from the lead
sheets. A drawback of this approach is that anticipated or
lagging chords changes lead to a slight mismatch between
the audio signal and the annotations, which may disturb
data-driven methods using this data as a training set. How-
ever, we argue that such quantization leads to annotations
that are more fit for displaying as sheet music and more
consistent than human segmentation, which is subjective
in this regard * . Furthermore, these cases are expected to
be rare because of the aforementioned backing track.

For each chord segment, we first determine if a string is
active by verifying whether the total duration of all notes
played on that string exceeds 5% of the segment duration.
This activity thresholding ensures that notes in adjacent
chord segments do not accidentally cause otherwise silent
strings to appear active simply because of an offset in chord
changes between the lead sheet and recording. Next, the
predominant note is determined for all active strings per
segment. This is done by taking the MIDI note value with
the longest total duration per-string (summed over all note
repetitions in the chord segment), resulting in a set of up to
six notes per chord segment from which we subsequently
derive a chord label.

3 Informal experiments with symbolic chord recognition software re-
sulted in a far worse segmentation.



The root of the chord is also taken from the lead sheet
and the inversion naturally arises from the lowest note in
the set. Finally, the chord type is determined from the
chroma of the set of notes per string through a decision
tree that is part of the open-source MusOO library *. See
Figure 1 for examples of instructed and played chords.

It is notable that our approach of determining the played
chord has several biases; namely, the boundary of each
chord and the root of each chord is predetermined. More
in depth investigation is needed to determine chord bound-
aries and roots purely automatically, but this is left for fu-
ture work.

5.2.3 Beats and Downbeats

Since the data is recorded against a click track, the tempo,
beats, downbeats and meter of all the excerpts are known.
These annotations are generated for each excerpt automat-
ically given this known metadata.

5.3 Inferred Stroke Information

Another pattern that can be recognized from the annotated
data is the inter-string onsets. With the help of the on-
set adjustment step, the annotation captures minute tim-
ing differences across onsets on different strings; and by
looking at these onset patterns, one can gain a much better
understanding of the picking activity that would be other-
wise complex to analyze. Figure 3 shows the onsets per
string for a short excerpt. Four different strokes can be
clearly identified within this 650 ms excerpt. By examin-
ing the relative order of strings in each of the strokes, we
can clearly observe that the first and last stroke are down-
strokes, and the second and third are up-strokes. Evident
from Figure 3, the inter-string onsets are only milliseconds
apart during fast strokes, and would be very difficult for
humans to manually annotate precisely. This nuanced de-
tail would have been lost if the onset adjustment step were
not applied.
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Figure 3. Onsets for each string are shown in different
colors.

6. BASELINE EXPERIMENTS

In order to better understand the new challenges posed by
this dataset, we evaluate the performance of strong base-
line algorithms against our ground truth notes, chords, and

4https://github.com/jpauwels/1libMus00

beats/downbeats. These experiments are performed with-
out the algorithms seeing any of GuitarSet’s data. Detailed
results can be found in the GuitarSet repository.> All box
plots used in this section have box edges showing the first
and third quartile, and the whiskers showing 1.5 interquar-
tile range (IQR) away from the box edges.

6.1 Notes

We evaluate the performance of the Deep Salience
multiple- fy estimation algorithm [4] on GuitarSet’s poly-
phonic rhythmic recordings. Figure 4 shows the results
across different splits of the data.

Opverall, the model has an accuracy of ~ 46%, and the
most common type of error is missed, rather than incor-
rect, notes. Looking at Figure 4 (Top Left), the results are
split by genre, and we see that Jazz is overall the most dif-
ficult genre to transcribe (likely due to the more complex
chord combinations), while Funk has the highest recall and
lowest precision (due to short notes and more unvoiced re-
gions). In Figure 4 (Bottom Left), we see that the audio
from the pickup is easier to transcribe than the audio from
the microphone, likely because the pickup signal is cleaner.

From Figure 4 (Top Right), we see that the performance
varies by player, both in terms of average accuracy and
in terms of the variance across all the player’s recordings.
This suggests that each player’s technique or playing style
is different enough that algorithm performance differs sig-
nificantly. Finally, in Figure 4 (Bottom Right), we see the
clear trend that the faster the tempo, the more difficult the
excerpt is to transcribe.
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Figure 4. Baseline algorithm multiple- f scores on differ-
ent splits of GuitarSet. The metrics are A (Accuracy), CA
(Chroma Accuracy), P (Precision), and R (Recall). (Top
Left) Scores split by recording mode. (Top Right) Scores
split by excerpt tempo. (Bottom Left) Scores split by
genre. (Bottom Right) Scores split by player.

If only the microphone split of the data is considered,
we see that the Deep Salience model performs worse on

Shttps://github.com/marl/GuitarSet



GuitarSet than it does on Bach10 and MedleyDB [4]. With
the accuracy at only = 43%, there are still significant pos-
sible performance gains to be had.

6.2 Chords

Next, we evaluate the performance of a state-of-the-art
chord recognition baseline [14] against the GuitarSet chord
labels. The results, stratified by genre, are show in
Figure 5. First, we see that again, some genre’s chord la-
bels are easier to estimate than others; in particular, the
Rock and Singer Songwriter genres are much easier due
to the generally simpler chord types used in those gen-
res compared with the others. Next, we see that there is
a large variance in the scores and that there are many out-
liers. Upon investigating the reason for these outliers, we
discovered that some popular guitar textures are not repre-
sented in the estimation algorithm’s output space. Power
chords and octaves, for example, are common guitar tex-
tures that are not within the range of typical chord esti-
mation output. While the lead sheet that guides the data
collection contains 42 unique chords, the actual detailed
chord annotations had a total of 478 unique chord labels
(counting all inversions and variations as unique), most of
which were small variations of the 42 due to players adding
or removing notes.

As shown in Table 1, the overall performance of the
baseline chord recognition algorithm on GuitarSet is com-
parable with the dataset evaluated by Humphrey and
Bello [9]. However, as mentioned above, some strata of
the dataset are considerably more difficult than the rest.
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Figure 5. Chord recognition baseline algorithm results on
GuitarSet, stratified by genre.

6.3 Beats and Downbeats

The performance of a state-of-the-art beat and downbeat
detection algorithm [6] is evaluated on GuitarSet, and the
results, stratified by player, are shown in Figure 6. More so
than for the previous two tasks, there is a substantial dif-
ference between the beat tracker’s performance for differ-
ent players. This suggests that the guitarists have different

Dataset Root 3rds  Triads T7ths  Tetrads

GuitarSet
— Instructed 0903 0.862 0.838 0.669 0.619
— Played 0.903 0.866 0.708 0.810 0.544

H. & B. [9] 0.861 0.836  0.812 0.729 0.671

Table 1. Median weighted recall scores for the baseline
algorithm [14] performed on different datasets

characteristics in how they play that affect beat detection,
such as their choice of strumming patterns or the strength
of their attacks. For example, player 00 has a fast strum-
ming style, and plays chords with embedded melodies,
which proves difficult for the algorithm.

Beat Downbeat
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Figure 6. Evaluation of baseline beat/downbeat detection
algorithm on GuitarSet, split by player. The metrics are
F (F-measure), AML-t (Any Metric Level-Total), and IG
(Information gain).

While the median beat and downbeat tracking F-
measure is in the 90% range for several players (which is
typical for state-of-the art-beat tracking [5]), several sub-
stratas of GuitarSet are challenging for beat and downbeat
estimation. This is especially true because the tempo and
meter do not change over time for each excerpt, yet the data
is still challenging for a state-of-the-art beat and downbeat
estimation algorithm.

7. CONCLUSIONS

In this paper, we presented a large and carefully anno-
tated dataset of guitar recordings which is available as an
open source resource to the research community. We gave
a detailed overview of the data collection process and a
description of the data itself. Finally, we described our
novel process for efficiently and accurately creating note,
chord, and beat annotations, and reported the performance
of state-of-the-art algorithms on these annotations.

We hope GuitarSet will be useful beyond providing
training and evaluation data for transcription models by
providing a gateway to investigate interesting problems
such as stroke analysis or harmony segmentation. We are
pleased to release GuitarSet to the research community and
hope that it will foster new, guitar-focused research.
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